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Introduction
Hydrogen is a promising renewable energy in the near future. Mg-Ni alloys are expected to be lightweight hydrogen-storage 
materials. The aim of this work is to clarify the close relation between the nanometer-scale structural properties and the 
hydriding properties of the alloys Mg-33, 38, 43 and 50 at.%Ni in which the different amounts of the amorphous MgNi (a-
MgNi) were partially dispersed around the nanocrystalline Mg2Ni (n-Mg2Ni). Furthermore, investigations on a-MgNi-based 
system for clarifying the effect of the short-range ordering on the hydriding properties are studied in detail.  
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Mg-Ni phase diagram

Results and discussion
Mg-33, 38, 43 and 50 at.%Ni with mechanically deformed structures

Substitution effects on the hydriding properties

X-ray diffraction profiles and TEM images of Ma-x at.%Ni-H.
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(Mg-x at.%Ni milled with argon for 72.0 ks (20 hours))

X-ray diffraction profiles of Mg-50 at.%Ni.

(Mg-50 at.%Ni milled with argon)
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n r [nm]
Mg-D 2.3 ± 0.3 0.218(3)
Ni-D 1.7 ± 0.3 0.164(3)

2Mg2Ni

D

The coordination numbers n and interatomic distances 
r of the Mg-D and Ni-D correlation in MgNiD1.6.

Thermogravimetric profiles of Mg-x at.%Ni.
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Conclusions

X-ray diffraction profiles of a-MaNi1-xTx.
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X-ray diffraction profiles of LiyMg1-yNi-H.
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X-ray diffraction profiles of Mg1-zAlzNi.
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Electrochemical p-c (hydrogen pressure-
composition) isotherms of a-MgNi1-xTx.
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Electrochemical p-c (hydrogen pressure-
composition) isotherms of a-Mg1-zAlzNi.
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The n-Mg2Ni was obtained by milling only Mg2Ni (x = 33). The a-MgNi was partially formed by milling of Mg2Ni with additional 
Ni (x = 38 and 43), and was homogeneously formed in equivalent composition (x = 50). The electrochemical p-c isotherm 
measurements revealed that there is obviously the miscibility gap (plateau) pressure higher than 1 × 10-4 MPa at ambient 
temperature even in the amorphous phase. The single amorphous alloy is formed for MgNi1-xTx with T = Co and Cu and x = 0 
~ 0.5. The p-c isotherms indicate that the energy levels for hydrogen become partially unstable by the substitutions.
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∆H(a-MgNi0.5T0.5H2) ∆H(MgH2) ∆H(Ni0.5T0.5H) ∆H(a-MgNi0.5T0.5)

T = Co -13 -37 +19 -26

T = Ni -20 -37 +12 -26

T = Cu - 4 -37 +29 -20

Calculated enthalpies of hydride formation (kJ/molH) of a-MgNi0.5T0.5, 
assuming that hydrogen occupies the 2Mg1Ni1T site.

The enthalpy of hydride formation of a-MgNi0.5T0.5 by the rule of reversed stability:

∆H(a-MgNi0.5T0.5H2) = ∆H(MgH2) + ∆H(Ni0.5T0.5H) – (1-Ψ)∆H(a-MgNi0.5T0.5).


