

June 19-22, 2005, Lucca, ITALY IPHE - Hydrogen Storage Technology Conference

Advanced Hydrogen Storage Functions of

Destabilized and Mixed Complex Hydrides

Shin-ichi ORIMO, Yuko NAKAMORI

Institute for Materials Research (IMR) Tohoku University

www.hydrogen.imr.tohoku.ac.jp

Research project

collaborated with

TOYOTA CRDL, INC. S. Towata www.tytlabs.co.jp

supported by

"Development for Safe Utilization and Infrastructure of Hydrogen"

www.nedo.go.jp/index.html

communicated with

E. Akiba, AIST-Tsukuba
H. Fujii, Hiroshima Univ.
C.M. Jensen, Univ. Hawaii
T. Kiyobayashi, AIST-Kansai
D.K. Ross, Univ. Salford
G. Sandrock, Sunatech.
S. Suda, Kogakuin/MERIT
H.T. Takeshita, Kansai Univ.
J.C.F. Wang, K.J. Gross, SNL
R. Zidan, SRNL
A. Züttel, Univ. Fribourg

focused on

- 1. Destabilization of LiBH₄ and LiNH₂
- 2. Combination of amide and hydride
- 3. Prevention of NH₃-contamination
- 4. Provision of new reaction pathway

Trinary collaboration

Metallurgical material synthesis

4 Guidelines

1. Destabilization of LiBH₄ and LiNH₂ *cation with larger electronegativity*

2. Combination of amide and hydride *lower* T_d / *faster reaction with "NH*₃"

3. Prevention of NH₃-contamination *"tunable" composition / starting material*

4. Provision of new reaction pathway *intermediate phase formed by dehydriding*

Dehydriding reaction

A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron and Ch. Emmenegger, *J. Alloys Compd.* 356-357 (2003) 515

$\text{LiNH}_2 + 2 \text{LiH} \Leftrightarrow \text{Li}_2\text{NH} + \text{LiH} + \text{H}_2 \Leftrightarrow \text{Li}_3\text{N} + 2 \text{H}_2$

45~60 (78*) kJ/molH₂ 116 (124*) kJ/molH₂

~ 10 mass% H₂

dehydriding temp. > 473-550 K

IEA target temp. < 353 K

Atomic and electronic structures

V.H. Jacobs, R. Juza, *Z. Anorg. Allg. Chem. 391* (1972) 271

T. Noritake, H. Nozaki, M. Aoki, S. Towata, G. Kitahara, Y. Nakamori, S. Orimo, *J. Alloys Compd.* 393 (2005) 264.

K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, *Phys. Rev. B* 71 (2005) 195109

Charge transfer

S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, *Appl. Phys. A (Rapid Commun.)* 79 (2004) 1765

K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, *Phys. Rev. B* 71 (2005) 195109

Y. Nakamori, S. Orimo, Mater. Eng. Sci. B 108 (2004) 51

Y. Nakamori, S. Orimo, J. Alloys Comp. 370 (2004) 271

Dehydriding temperatures

T. Noritake, S. Towata, Appl. Phys. A (Rapid Commun.) 79 (2004) 1765-1767

Mg substitution in LiBH₄

A. Züttel et al., *J. Alloys Compd.* (to be submitted)

K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, *Phys. Rev. B* 69 (2004) 245120 S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, *J. Alloys Compd.*, in press

4 Guidelines

1. Destabilization of LiBH₄ and LiNH₂

2. Combination of amide and hydride lower T_d / faster reaction with "NH₃"

3. Prevention of NH₃-contamination

4. Provision of new reaction pathway

Amide and hydride

dehydriding process			Ideal Hydrogen	Pof
Hydriding	Partial Dehyd.	Dehyd.	(mass%)	Kei.
LiNH ₂ + 2LiH	$Li_2NH + LiH + H_2$	$Li_{3}N + 2H_{2}$	10.4	Dafert et al., Monatsh. Chem.
Ca ₂ NH + CaH ₂	CaNH + 2H ₂		2.1	(1910) , Chen et al., <i>Nature</i> (2002)
LiNH ₂ + NaH	LiNaNH + H ₂		4.2	Ichikawa et al., <i>JPChem B</i> (2004)
2LiNH ₂ + MgH ₂	Li ₂ Mg(NH) ₂ + 2H ₂		5.6	Luo, <i>JALCOM</i> (2004) Wang, <i>DOE Report</i> (2004)
3 <mark>Mg(NH₂)₂ + 12Li</mark> H	$\frac{\text{Mg}_{3}\text{N}_{2} + 4\text{Li}_{2}\text{NH} +}{4\text{LiH} + 8\text{H}_{2}}$	$Mg_{3}N_{2} + 4Li_{3}N + 12H_{2}$	9.1	Nakamori et al., Appl. Phys. A, J. Power Sources (2004)
3Mg(NH ₂) ₂ + 8LiH	$\frac{\text{Mg}_{3}\text{N}_{2} + 4\text{Li}_{2}\text{NH} +}{8\text{H}_{2}}$		7.0	Leng et al., JPChem B (2004)
3 <mark>Mg(NH₂)₂ + 6Li</mark> H	3Li ₂ Mg(NH) ₂ + 6H ₂		5.6	Luo et al., <i>MH2004</i> , Xiong et al., <i>Adv. Mater.</i> (2004)

Dehydriding process

P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, J. Phys. Chem. B 107 (2003) 10967

Y.H. Hu, E. Ruckenstein, *J. Phys. Chem. A 107* (2003) 9737 T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, *J. Phys. Chem. B 108* (2004) 7887

1st step (formation of "NH₃")

Point : MNH_2 with lower decomp. temp. T_d

Y. Nakamori et al., *Mater. Trans.*, in press

2^{nd} step (H₂ emission)

<u>*Point*</u>: <u>M</u>H with faster reaction with "NH₃"

Mater. Trans., in press

Optimized combination

→ "<mark>NH</mark>3" + MgNH $Mg(NH_2)_2$ Lower \rightarrow "NH₃" + Mg₃N₂ decomposition temp. $LiH + (NH_3)^* \rightarrow LiNH_2 + H_2$ faster reaction with "NH₃" $Mg(NH_2)_2 + x LiH$ NH_2 Mg composition ratio

Y. Nakamori, G. Kitahara, S. Orimo, J. Power Sources 137 (2004) 309

4 Guidelines

1. Destabilization of LiBH₄ and LiNH₂

2. Combination of amide and hydride

3. Prevention of NH₃-contamination *"tunable" composition / starting material*

4. Provision of new reaction pathway

H_2 / NH_3 from $Mg(NH_2)_2 + x LiH$

Y. Nakamori, S. Orimo, submitted

Affected by composition and ...

$Mg(NH_2)_2 + x LiH$

Y. Nakamori, G. Kitahara, A, Ninomiya, K. Aoki, T. Noritake, S. Towata, S. Orimo, Mater. Trans., in press

"NH₃ mediating process"

Y.H. Hu, E. Ruckenstein, J. Phys. Chem. A 107 (2003) 9737

T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, J. Phys. Chem. B 108 (2004) 7887

S. Hino, T. Ichikawa, N. Ogita, M. Udagawa, H. Fujii, Chem. Commun., in press

Y. Nakamori, G. Kitahara, A, Ninomiya, K. Aoki, T. Noritake, S. Towata, S. Orimo, Mater. Trans., in press

affected by	<u>composition,</u> starting material (= elemental dispersion).
	atmosphere,
	heating rate,
	open/close system,

x, depending on applications

4 Guidelines

1. Destabilization of LiBH₄ and LiNH₂

2. Combination of amide and hydride

3. Prevention of NH₃-contamination

4. Provision of new reaction pathway *Intermediate phase formed by dehydriding*

Mixing effect

 $\begin{array}{c} \text{LiNH}_2 \rightarrow 1/2 \text{ Li}_2 \text{NH} + 1/2 \text{ NH}_3 \rightarrow 1/3 \text{ Li}_3 \text{N} + 2/3 \text{ NH}_3 \\ \text{NH}_3 \text{ emission, 600 K} \end{array}$

LiH ⇔ Li + 1/2 H₂ 13.8 mass%H₂, 953 K

 $\bigcirc \text{LiNH}_2 + 2 \text{ LiH} \Leftrightarrow \text{Li}_2\text{NH} + \text{LiH} + \text{H}_2 \Leftrightarrow \text{Li}_3\text{N} + 2 \text{H}_2$ 5.5 mass%H₂, 473 K 5.2 mass%H₂, 700 K

Any intermediate phase after/during dehydriding?

- \bigcirc LiBH₄ + LiNH₂ : "Li-B-N(-H)" exists
- × LiBH₄ + LiAIH₄ : "Li-B-AI(-H)" may not exist

Combination of $LiBH_4 + LiNH_2$

Y. Nakamori, A. Ninomiya, G. Kitahara, K. Aoki, T. Noritake, K. Miwa Y. Kojima, S. Orimo, *J. Power Sources* in press

M. Aoki, K. Miwa, T. Noritake, G. Kitahara, Y. Nakamori, S. Orimo, S. Towata, *Appl. Phys.A 80* (2005) 1409

4 Guidelines

1. Destabilization of LiBH₄ and LiNH₂ *cation with larger electronegativity*

2. Combination of amide and hydride *lower* T_d / *faster reaction with "NH*₃"

3. Prevention of NH₃-contamination *"tunable" composition / starting material*

4. Provision of new reaction pathway *intermediate phase formed by dehydriding*

Recent publications

Theory

K. Miwa et al., "First principles study on lithium borohydride $LiBH_4$ ", Phys. Rev. B 69 (2004) 245120

K. Miwa et al., "First-principles study on lithium amide for hydrogen storage", Phys. Rev. B 71 (2005) 195109

Analysis

S. Orimo et al., "Material properties of MBH_4 (M = Li, Na, and K)", Mater. Sci. Eng. B 108 (2004) 51

K. Ohoyama et al., "*Revised crystal structure* model of Li₂NH by neutron powder diffraction", *J. Phys. Soc. Jan.* 74 (2005) 483

T. Noritake et al., "Crystal structure and charge density analysis of Li₂NH by synchrotron X-ray diffraction", J. Alloys Compd. 393 (2005) 264

Material Synthesis

Y. Nakamori, S. Orimo, "Destabilization of Li-based complex hydrides", J. Alloys Compd. 370 (2004) 271

S. Orimo et al., "Destabilization and enhanced dehydriding reaction of LiNH₂ – an electronic structure viewpoint", Appl. Phys. A (Rapid Commun.) 79 (2004) 1765

Y. Nakamori, et al., "Synthesis and dehydriding studies of Mg-N-H systems", J. Power Sources 138 (2004) 309

M. Aoki et al., "Destabilization of $LiBH_4$ by mixing with $LiNH_2$ ", Appl. Phys. A 80 (2005) 1409.

Y. Nakamori et al., "*Reversible hydrogen storage functions* for the mixtures of Li_3N and Mg_3N_2 ", Appl. Phys. A 80 (2005) 1

Y. Nakamori, et al., "Guidelines for developing amide based hydrogen storage materials", Mater. Trans., in press

S. Orimo et al., "Dehydriding and rehydriding reactions of LiBH₄", *J. Alloys Compd.* in press

Y. Nakamori et al., "Dehydriding reaction of mixed complex hydrides", J. Power Sources, in press